

DOE's Critical Materials Strategy

Diana Bauer
US Department of Energy
Office of Policy and International Affairs
December 6, 2010

Motivation

- The global deployment of energy efficiency and renewable energy technologies implies an increased demand for rare earth elements and other materials.
- This is one of the many challenges we face in advancing a clean energy agenda.
- The Strategy is one step towards addressing this challenge.

Approach to Address the Challenge

- Supply chain globalization
- Material substitution in clean energy applications
- Recycling, re-use, and more efficient use

Strategy Scope

- Material demand for 4 energy technologies:
 - Wind turbines: magnets
 - Electric vehicles: batteries, magnets
 - Solar cells: PV films
 - Energy efficient lighting: phosphors
- Energy Deployment Scenarios
 - Moderate Deployment: IEA Baseline, Reference
 - Rapid Deployment: IEA Blue Map, 450 Scenario
- Challenges and opportunities in the short and medium term

Priority Elements

Technology High Deployment Scenarios

Million Vehicles

Additions of Hybrid and Electric Vehicles

Wind Additions

Global CFL Demand

Global PV Additions

Source: IEA estimated.

Project Timeline

TO DATE

- March 17 Assistant Secretary Sandalow announces plan to develop DOE's Critical Materials Strategy
- May 6 Request for Information (RFI) released
- June 7 RFI closed
- June- present Analysis and drafting

Report will be available later this year

The Strategy is Addressing the Entire Supply Chain

Factors Complicating Materials Markets

- Large mining capital requirements
- Material coproduction
- Bottlenecks and lag times across the supply chain
- Price volatility
- Lack of market transparency
- Geopolitical aspects of mining and manufacturing
- Uncertain future demand profiles

Topics Explored in Connection with the Strategy

- Information
- Financial Incentives
- R&D
- Education and Training

Related Government Activities

- GAO Report: Rare Earth Materials in the Defense Supply Chain
- CRS Report: Rare Earth Elements: The Global Supply Chain
- DOD Forthcoming study identifying defense applications of rare earths
- OSTP

 Rare Earth Elements Interagency
 Workgroup

Rare Earth/ Critical Materials R&D Needs Workshops

- Nov 18-19 Japan-US REE Roundtable at LLNL
- Dec 3 Transatlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future at MIT
- Dec 6 ARPA-E Workshop on Rare Earth and Critical materials

U.S.-Japan REE Roundtable

- DOE, national laboratories, USGS, academia, business/industry
- Japan delegation led by Toru Nakayama, NEDO
 - New Energy and Industrial Technology and Development Organization (NEDO)
 - National Institute of Advanced Industrial Science and Technology (AIST)
 - Japan Oil, Gas and Metals National Corporation (JOGMEC)
 - Agency for Natural Resources and Energy, METI
 - Tohoku University
 - Kansai University

U.S.-Japan REE Roundtable : R&D Topics Discussed

I. Fundamental Properties of Rare Earths

- Fundamental coordination chemistry of felement materials
- Multiple scales: nano- to micro- to bulk
- Behavior and performance in various molecular structures and complexes

II. Detection, Recovery, and Separation

- Detection and Extraction
 - Remote sensing and geochemical exploration to detect and characterize concealed ore deposits
 - Target extraction with selective solvents
- Element Separations
 - Increase separation factors among elements
 - Apply to both mined materials and recycle streams
 - E.g. advanced ion exchange, solvent extraction, electrochemical
- Simple, economic, energy-efficient, with low environmental impact

III. Physical Characterization and Models

- Applies to Rare Earth Elements and potential substitutes
- Characterization methods and technologies
 - Rapid techniques for quantitative automated mineralogy
 - Assay bulk material, no preparation, non-destructive, near realtime
- Computational science, models, and simulation
 - Improve approximation methods for modeling f-electron atoms
 - Explore methods from atomistic to multi-scale or multiphysics simulations
 - Material property-based design tools
- Tune properties in rapid, non-destructive, economical way

IV. Effectiveness of Use in Targeted Applications

- Japan's Rare Metal Substitute Materials Development Program Target Applications in Rare Earths
 - Dysprosium and Neodymium for REE magnets [30% reduction]
 - Grain refinement and nanostructure techniques
 - REE- less/free alloys or other elements
 - Cerium for polishing abrasives [30% reduction]
 - Composite abrasive technology
 - Cerium-free abrasives with reformative polishing techniques
 - Europium and Terbium in phosphors for fluorescent lighting [80% reduction]
 - Optimized use in manufacturing and lighting systems
 - Materials development in glasses and phosphors

Other Areas for U.S.-Japan Cooperation

- Platforms for exchange of information and ideas
 - Virtual data bases and networks
 - Research results, tools, methods, lessons learned, best practices
- Human capital development
 - Education and training for new and transitional professionals
 - Develop market cohorts: business, economics, legal, political, socio-environmental
- Lifecycle and strategic risk management studies
 - Strategies for sustainability and R&D activities
 - Evaluate regional and global market developments

Questions?

http://www.pi.energy.gov/

diana.bauer@hq.doe.gov